现代目光跟踪系统中的相机具有基本的带宽和功率限制,实际上将数据采集速度限制为300 Hz。这会阻碍使用移动眼镜手术器的使用,例如低潜伏期预测性渲染,或者在野外使用头部安装的设备来快速而微妙的眼动运动,例如微扫视。在这里,我们提出了一个基于混合框架的近眼凝视跟踪系统,可提供超过10,000 Hz的更新速率,其准确性与在相同条件下评估时相匹配的高端台式机商业跟踪器。我们的系统建立在新兴事件摄像机的基础上,该摄像头同时获得定期采样框架和自适应采样事件。我们开发了一种在线2D学生拟合方法,该方法每一个或几个事件都会更新参数模型。此外,我们提出了一个多项式回归器,用于实时估算参数学生模型的凝视点。使用第一个基于事件的凝视数据集,可在https://github.com/aangelopoulos/event_based_gaze_tracking上获得,我们证明我们的系统可实现0.45度 - 1.75度的准确度,用于从45度到98度的视野。借助这项技术,我们希望能够为虚拟和增强现实提供新一代的超低延迟凝视呈现和展示技术。
translated by 谷歌翻译
Reinforcement learning (RL) has shown great promise with algorithms learning in environments with large state and action spaces purely from scalar reward signals. A crucial challenge for current deep RL algorithms is that they require a tremendous amount of environment interactions for learning. This can be infeasible in situations where such interactions are expensive; such as in robotics. Offline RL algorithms try to address this issue by bootstrapping the learning process from existing logged data without needing to interact with the environment from the very beginning. While online RL algorithms are typically evaluated as a function of the number of environment interactions, there exists no single established protocol for evaluating offline RL methods.In this paper, we propose a sequential approach to evaluate offline RL algorithms as a function of the training set size and thus by their data efficiency. Sequential evaluation provides valuable insights into the data efficiency of the learning process and the robustness of algorithms to distribution changes in the dataset while also harmonizing the visualization of the offline and online learning phases. Our approach is generally applicable and easy to implement. We compare several existing offline RL algorithms using this approach and present insights from a variety of tasks and offline datasets.
translated by 谷歌翻译